Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.553
Filtrar
1.
BMC Genomics ; 25(1): 360, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605297

RESUMO

BACKGROUND: During mitosis the cell depends on proper attachment and segregation of replicated chromosomes to generate two identical progeny. In cancers defined by overexpression or dysregulation of the MYC oncogene this process becomes impaired, leading to genomic instability and tumor evolution. Recently it was discovered that the chromatin regulator WDR5-a critical MYC cofactor-regulates expression of genes needed in mitosis through a direct interaction with the master kinase PDPK1. However, whether PDPK1 and WDR5 contribute to similar mitotic gene regulation in MYC-overexpressing cancers remains unclear. Therefore, to characterize the influence of WDR5 and PDPK1 on mitotic gene expression in cells with high MYC levels, we performed a comparative transcriptomic analysis in neuroblastoma cell lines defined by MYCN-amplification, which results in high cellular levels of the N-MYC protein. RESULTS: Using RNA-seq analysis, we identify the genes regulated by N-MYC and PDPK1 in multiple engineered CHP-134 neuroblastoma cell lines and compare them to previously published gene expression data collected in CHP-134 cells following inhibition of WDR5. We find that as expected N-MYC regulates a multitude of genes, including those related to mitosis, but that PDPK1 regulates specific sets of genes involved in development, signaling, and mitosis. Analysis of N-MYC- and PDPK1-regulated genes reveals a small group of commonly controlled genes associated with spindle pole formation and chromosome segregation, which overlap with genes that are also regulated by WDR5. We also find that N-MYC physically interacts with PDPK1 through the WDR5-PDPK1 interaction suggesting regulation of mitotic gene expression may be achieved through a N-MYC-WDR5-PDPK1 nexus. CONCLUSIONS: Overall, we identify a small group of genes highly enriched within functional gene categories related to mitotic processes that are commonly regulated by N-MYC, WDR5, and PDPK1 and suggest that a tripartite interaction between the three regulators may be responsible for setting the level of mitotic gene regulation in N-MYC amplified cell lines. This study provides a foundation for future studies to determine the exact mechanism by which N-MYC, WDR5, and PDPK1 converge on cell cycle related processes.


Assuntos
Genes myc , Neuroblastoma , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação da Expressão Gênica , Neuroblastoma/metabolismo , Segregação de Cromossomos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo
2.
Mol Med ; 30(1): 50, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622518

RESUMO

BACKGROUND: Colorectal cancer standed as a global health challenge, ranking third in cancer incidence and second in cancer-related deaths worldwide. A deeper understanding of the intricate mechanisms driving colorectal cancer development was pressing need. STK16 had garnered attention in recent researches, while its involvement in cancer had been minimally explored. c-MYC had emerged as a key player in cancer biology. Due to its complex structure, multifunctionality, and intricate interactions, directly inhibiting the activity of c-MYC proves to be challenging. Hence, current research was directing efforts towards modulating c-MYC expression levels. METHODS: Immunoblot, Immunohistochemistry and immunoprecipitation assays were conducted to assess the indicated protein expression levels. RT-PCR was performed to detect the corresponding mRNA expression levels. The proliferation, migration, invasion, and colony formation abilities of the specified cancer cells were investigated using CCK8 assays, Brdu assays, transwell assays, and colony formation assays, respectively. Cellular and animal experiments were performed to investigate the correlation between STK16 signaling and c-MYC signaling. RESULTS: STK16 plays a positive regulatory role in the progression of colorectal cancer. Delving into the molecular mechanisms, we unveiled that STK16 phosphorylated c-MYC at serine 452, a pivotal event hindering the ubiquitin-proteasome pathway degradation of c-MYC. Importantly, colorectal cancer proliferation mediated by STK16 was found to be dependent on the phosphorylation of c-MYC at S452. Furthermore, the researchers demonstrated that STK16 knockout or pharmacological inhibition significantly curtailed colorectal cancer proliferation and c-MYC expression in in vivo animal models. CONCLUSION: We discovered that STK16 phosphorylates c-MYC at serine 452, hindering its degradation via the ubiquitin-proteasome pathway. STK16 inhibition, either genetically or pharmacologically, effectively curtails cancer growth and c-MYC expression in vivo. These findings highlight STK16 as a potential therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Serina/metabolismo , Ubiquitinas/genética
3.
Genes Dev ; 38(5-6): 253-272, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38565249

RESUMO

Oncogenic activation of MYC in cancers predominantly involves increased transcription rather than coding region mutations. However, MYC-dependent lymphomas frequently acquire point mutations in the MYC phosphodegron, including at threonine 58 (T58), where phosphorylation permits binding via the FBW7 ubiquitin ligase triggering MYC degradation. To understand how T58 phosphorylation functions in normal cell physiology, we introduced an alanine mutation at T58 (T58A) into the endogenous c-Myc locus in the mouse germline. While MYC-T58A mice develop normally, lymphomas and myeloid leukemias emerge in ∼60% of adult homozygous T58A mice. We found that primitive hematopoietic progenitor cells from MYC-T58A mice exhibit aberrant self-renewal normally associated with hematopoietic stem cells (HSCs) and up-regulate a subset of MYC target genes important in maintaining stem/progenitor cell balance. In lymphocytes, genomic occupancy by MYC-T58A was increased at all promoters compared with WT MYC, while genes differentially expressed in a T58A-dependent manner were significantly more proximal to MYC-bound enhancers. MYC-T58A lymphocyte progenitors exhibited metabolic alterations and decreased activation of inflammatory and apoptotic pathways. Our data demonstrate that a single point mutation stabilizing MYC is sufficient to skew target gene expression, producing a profound gain of function in multipotential hematopoietic progenitors associated with self-renewal and initiation of lymphomas and leukemias.


Assuntos
Neoplasias Hematológicas , Linfoma , Camundongos , Animais , Mutação Puntual , Células-Tronco Hematopoéticas/metabolismo , Células Germinativas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
4.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573832

RESUMO

BACKGROUND: Sorafenib is the first-line therapy for patients with advanced-stage HCC, but its clinical cure rate is unsatisfactory due to adverse reactions and drug resistance. Novel alternative strategies to overcome sorafenib resistance are urgently needed. Oxyberberine (OBB), a major metabolite of berberine in vivo, exhibits potential antitumor potency in various human malignancies, including liver cancer. However, it remains unknown whether and how OBB sensitizes liver cancer cells to sorafenib. METHODS: Cell viability, trypan blue staining and flow cytometry assays were employed to determine the synergistic effect of OBB and sorafenib on killing HCC cells. PCR, western blot, co-immunoprecipitation and RNA interference assays were used to decipher the mechanism by which OBB sensitizes sorafenib. HCC xenograft models and clinical HCC samples were utilized to consolidate our findings. RESULTS: We found for the first time that OBB sensitized liver cancer cells to sorafenib, enhancing its inhibitory effect on cell growth and induction of apoptosis in vitro. Interestingly, we observed that OBB enhanced the sensitivity of HCC cells to sorafenib by reducing ubiquitin-specific peptidase 7 (USP7) expression, a well-known tumor-promoting gene. Mechanistically, OBB inhibited notch homolog 1-mediated USP7 transcription, leading to the downregulation of V-Myc avian myelocytomatosis viral oncogene homolog (c-Myc), which synergized with sorafenib to suppress liver cancer. Furthermore, animal results showed that cotreatment with OBB and sorafenib significantly inhibited the tumor growth of liver cancer xenografts in mice. CONCLUSIONS: These results indicate that OBB enhances the sensitivity of liver cancer cells to sorafenib through inhibiting notch homolog 1-USP7-c-Myc signaling pathway, which potentially provides a novel therapeutic strategy for liver cancer to improve the effectiveness of sorafenib.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Sorafenibe/farmacologia , Peptidase 7 Específica de Ubiquitina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/farmacologia , Transdução de Sinais , Linhagem Celular Tumoral , Receptor Notch1/uso terapêutico
5.
Nat Genet ; 56(4): 663-674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38454021

RESUMO

The transcription factor MYC is overexpressed in most cancers, where it drives multiple hallmarks of cancer progression. MYC is known to promote oncogenic transcription by binding to active promoters. In addition, MYC has also been shown to invade distal enhancers when expressed at oncogenic levels, but this enhancer binding has been proposed to have low gene-regulatory potential. Here, we demonstrate that MYC directly regulates enhancer activity to promote cancer type-specific gene programs predictive of poor patient prognosis. MYC induces transcription of enhancer RNA through recruitment of RNA polymerase II (RNAPII), rather than regulating RNAPII pause-release, as is the case at promoters. This process is mediated by MYC-induced H3K9 demethylation and acetylation by GCN5, leading to enhancer-specific BRD4 recruitment through its bromodomains, which facilitates RNAPII recruitment. We propose that MYC drives prognostic cancer type-specific gene programs through induction of an enhancer-specific epigenetic switch, which can be targeted by BET and GCN5 inhibitors.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas Nucleares/genética , Prognóstico , Elementos Facilitadores Genéticos/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Epigênese Genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
7.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542324

RESUMO

The epidermis hosts populations of epithelial stem cells endowed with well-documented renewal and regenerative functions. This tissue thus constitutes a model for exploring the molecular characteristics of stem cells, which remain to date partially characterized at the molecular level in human skin. Our group has investigated the regulatory functions of the KLF4/TGFB1 and the MAD4/MAX/MYC signaling pathways in the control of the immaturity-stemness versus differentiation fate of keratinocyte stem and precursor cells from human interfollicular epidermis. We described that down-modulation of either KLF4 or MXD4/MAD4 using RNA interference tools promoted an augmented stemness cellular status; an effect which was associated with significant transcriptional changes, as assessed by RNA-sequencing. Here, we have implemented a computational approach aimed at integrating the level of the coding genome, comprising the transcripts encoding conventional proteins, and the non-coding genome, with a focus on long non-coding RNAs (lncRNAs). In addition, datasets of micro-RNAs (miRNAs) with validated functions were interrogated in view of identifying miRNAs that could make the link between protein-coding and non-coding transcripts. Putative regulons comprising both coding and long non-coding transcripts were built, which are expected to contain original pro-stemness candidate effectors available for functional validation approaches. In summary, interpretation of our basic functional data together with in silico biomodeling gave rise to a prospective picture of the complex constellation of transcripts regulating the keratinocyte stemness status.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Estudos Prospectivos , Transdução de Sinais , Células-Tronco/metabolismo , MicroRNAs/metabolismo , Proteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Neuromolecular Med ; 26(1): 8, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546874

RESUMO

This study focuses on understanding the role of c-Myc, a cancer-associated transcription factor, in the penumbra following ischemic stroke. While its involvement in cell death and survival is recognized, its post-translational modifications, particularly acetylation, remain understudied in ischemia models. Investigating these modifications could have significant clinical implications for controlling c-Myc activity in the central nervous system. Although previous studies on c-Myc acetylation have been limited to non-neuronal cells, our research examines its expression in perifocal cells during stroke recovery to explore regulatory mechanisms via acetylation. We found that in peri-infarct neurons, c-Myc is upregulated with acetylation at K148 but not K323 during the acute phase of stroke, with SIRT2 deacetylase primarily affecting K148 acetylation. Molecular dynamics simulations suggest that lysine 148 plays a crucial role in stabilizing c-Myc spatial structure. Increased acetylation at K148 reduces c-Myc compaction, potentially limiting its nuclear penetration, promoting calpain-mediated cleavage, and decreasing nuclear localization. Additionally, cytoplasmic acetylation at K148 may alter c-Myc's interaction with unidentified proteins, potentially influencing its pro-apoptotic effects and promoting cytoplasmic accumulation. Targeting SIRT2 with selective inhibitors could be a promising avenue for future stroke therapy strategies.


Assuntos
Sirtuína 2 , Acidente Vascular Cerebral , Humanos , Lisina/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Acidente Vascular Cerebral/metabolismo , Isquemia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
World J Surg Oncol ; 22(1): 57, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369463

RESUMO

BACKGROUND: By being highly involved in the tumor evolution and disease progression of small cell lung cancer (SCLC), Myc family members (C-Myc, L-Myc, and N-Myc) might represent promising targetable molecules. Our aim was to investigate the expression pattern and prognostic relevance of these oncogenic proteins in an international cohort of surgically resected SCLC tumors. METHODS: Clinicopathological data and surgically resected tissue specimens from 104 SCLC patients were collected from two collaborating European institutes. Tissue sections were stained by immunohistochemistry (IHC) for all three Myc family members and the recently introduced SCLC molecular subtype-markers (ASCL1, NEUROD1, POU2F3, and YAP1). RESULTS: IHC analysis showed C-Myc, L-Myc, and N-Myc positivity in 48%, 63%, and 9% of the specimens, respectively. N-Myc positivity significantly correlated with the POU2F3-defined molecular subtype (r = 0.6913, p = 0.0056). SCLC patients with C-Myc positive tumors exhibited significantly worse overall survival (OS) (20 vs. 44 months compared to those with C-Myc negative tumors, p = 0.0176). Ultimately, in a multivariate risk model adjusted for clinicopathological and treatment confounders, positive C-Myc expression was confirmed as an independent prognosticator of impaired OS (HR 1.811, CI 95% 1.054-3.113, p = 0.032). CONCLUSIONS: Our study provides insights into the clinical aspects of Myc family members in surgically resected SCLC tumors. Notably, besides showing that positivity of Myc family members varies across the patients, we also reveal that C-Myc protein expression independently correlates with worse survival outcomes. Further studies are warranted to investigate the role of Myc family members as potential prognostic and predictive markers in this hard-to-treat disease.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/cirurgia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Prognóstico , Progressão da Doença
11.
Front Immunol ; 15: 1320689, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318177

RESUMO

During lymphocyte development, a diverse repertoire of lymphocyte antigen receptors is produced to battle against pathogens, which is the basis of adaptive immunity. The diversity of the lymphocyte antigen receptors arises primarily from recombination-activated gene (RAG) protein-mediated V(D)J rearrangement in early lymphocytes. Furthermore, transcription factors (TFs), such as early B cell factor 1 (EBF1), paired box gene 5 (PAX5), and proto-oncogene myelocytomatosis oncogene (MYC), play critical roles in regulating recombination and maintaining normal B cell development. Therefore, the aberrant expression of these TFs may lead to hematologic neoplasms.


Assuntos
Neoplasias Hematológicas , Neoplasias , Fator de Transcrição PAX5 , Proteínas Proto-Oncogênicas c-myc , Transativadores , Humanos , Linfócitos B , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Neoplasias/metabolismo , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Receptores de Antígenos/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
12.
Cell Commun Signal ; 22(1): 93, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302971

RESUMO

BACKGROUND: Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS: Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS: Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION: Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima , Proteômica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Glicólise , Células de Schwann/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Mamíferos/metabolismo
13.
Nat Commun ; 15(1): 963, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302473

RESUMO

The MYC oncogene is often dysregulated in human cancer, including hepatocellular carcinoma (HCC). MYC is considered undruggable to date. Here, we comprehensively identify genes essential for survival of MYChigh but not MYClow cells by a CRISPR/Cas9 genome-wide screen in a MYC-conditional HCC model. Our screen uncovers novel MYC synthetic lethal (MYC-SL) interactions and identifies most MYC-SL genes described previously. In particular, the screen reveals nucleocytoplasmic transport to be a MYC-SL interaction. We show that the majority of MYC-SL nucleocytoplasmic transport genes are upregulated in MYChigh murine HCC and are associated with poor survival in HCC patients. Inhibiting Exportin-1 (XPO1) in vivo induces marked tumor regression in an autochthonous MYC-transgenic HCC model and inhibits tumor growth in HCC patient-derived xenografts. XPO1 expression is associated with poor prognosis only in HCC patients with high MYC activity. We infer that MYC may generally regulate and require altered expression of nucleocytoplasmic transport genes for tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Genes myc , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
14.
Nat Commun ; 15(1): 1865, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424045

RESUMO

The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein. Using probe-based Molecular Dynamics (MD) simulations and machine learning, we identify a conformational switch in the c-MYC amino-terminal transactivation domain (termed coreMYC) that cycles between a closed, inactive, and an open, active conformation. Using the polyphenol epigallocatechin gallate (EGCG) to modulate the conformational landscape of coreMYC, we show through biophysical and cellular assays that the induction of a closed conformation impedes its interactions with the transformation/transcription domain-associated protein (TRRAP) and the TATA-box binding protein (TBP) which are essential for the transcriptional and oncogenic activities of c-MYC. Together, these findings provide insights into structure-activity relationships of c-MYC, which open avenues towards the development of shape-shifting compounds to target c-MYC as well as other disordered transcription factors for cancer treatment.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Humanos , Ativação Transcricional , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Conformação Molecular , Ligação Proteica
15.
Nat Commun ; 15(1): 1446, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365788

RESUMO

In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.


Assuntos
Fenômenos Bioquímicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Animais , Camundongos , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , RNA Polimerases Dirigidas por DNA/metabolismo , Evasão da Resposta Imune , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
16.
Neoplasia ; 49: 100971, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301392

RESUMO

More than half of all cancers demonstrate aberrant c-Myc expression, making this arguably the most important human oncogene. Deregulated long non-coding RNAs (lncRNAs) are also commonly implicated in tumorigenesis, and some limited examples have been established where lncRNAs act as biological tuners of c-Myc expression and activity. Here, we demonstrate that the lncRNA denoted c-Myc Enhancing Factor (MEF) enjoys a cooperative relationship with c-Myc, both as a transcriptional target and driver of c-Myc expression. Mechanistically, MEF functions by binding to and stabilizing the expression of hnRNPK in colorectal cancer cells. The MEF-hnRNPK interaction serves to disrupt binding between hnRNPK and the E3 ubiquitin ligase TRIM25, which attenuates TRIM25-dependent hnRNPK ubiquitination and proteasomal destruction. In turn, the stabilization of hnRNPK through MEF enhances c-Myc expression by augmenting the translation c-Myc. Moreover, modulating the expression of MEF in shRNA-mediated knockdown and overexpression studies revealed that MEF expression is essential for colorectal cancer cell proliferation and survival, both in vitro and in vivo. From the clinical perspective, we show that MEF expression is differentially increased in colorectal cancer tissues compared to normal adjacent tissues. Further, correlations exist between MEF, c-Myc, and hnRNPK suggesting the MEF-c-Myc positive feedback loop is active in patients. Together these data demonstrate that MEF is a pivotal partner of the c-Myc network and propose MEF as a valuable therapeutic target for colorectal cancer.


Assuntos
Neoplasias Colorretais , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Neoplásica da Expressão Gênica , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral
17.
Proc Natl Acad Sci U S A ; 121(7): e2310479121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335255

RESUMO

Metabolic reprogramming is critical during clear cell renal cell carcinoma (ccRCC) tumorigenesis, manifested by accumulation of lipid droplets (LDs), organelles that have emerged as new hallmarks of cancer. Yet, regulation of their biogenesis is still poorly understood. Here, we demonstrate that MYC inhibition in ccRCC cells lacking the von Hippel Lindau (VHL) gene leads to increased triglyceride content potentiating LD formation in a glutamine-dependent manner. Importantly, the concurrent inhibition of MYC signaling and glutamine metabolism prevented LD accumulation and reduced tumor burden in vivo. Furthermore, we identified the hypoxia-inducible lipid droplet-associated protein (HILPDA) as the key driver for induction of MYC-driven LD accumulation and demonstrated that conversely, proliferation, LD formation, and tumor growth are impaired upon its downregulation. Finally, analysis of ccRCC tissue as well as healthy renal control samples postulated HILPDA as a specific ccRCC biomarker. Together, these results provide an attractive approach for development of alternative therapeutic interventions for the treatment of this type of renal cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Gotículas Lipídicas , Proteínas Proto-Oncogênicas c-myc , Humanos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias Renais/patologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Regulação para Cima , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
18.
Eur J Med Chem ; 267: 116194, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340508

RESUMO

Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteínas Proto-Oncogênicas c-myc , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Oncogenes , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia
19.
Front Immunol ; 15: 1324045, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390324

RESUMO

MYC activation is a known hallmark of cancer as it governs the gene targets involved in various facets of cancer progression. Of interest, MYC governs oncometabolism through the interactions with its partners and cofactors, as well as cancer immunity via its gene targets. Recent investigations have taken interest in characterizing these interactions through multi-Omic approaches, to better understand the vastness of the MYC network. Of the several gene targets of MYC involved in either oncometabolism or oncoimmunology, few of them overlap in function. Prominent interactions have been observed with MYC and HIF-1α, in promoting glucose and glutamine metabolism and activation of antigen presentation on regulatory T cells, and its subsequent metabolic reprogramming. This review explores existing knowledge of the role of MYC in oncometabolism and oncoimmunology. It also unravels how MYC governs transcription and influences cellular metabolism to facilitate the induction of pro- or anti-tumoral immunity. Moreover, considering the significant roles MYC holds in cancer development, the present study discusses effective direct or indirect therapeutic strategies to combat MYC-driven cancer progression.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-myc , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicólise
20.
Environ Toxicol ; 39(5): 2794-2802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38282581

RESUMO

Aerobic glycolysis is a typical metabolic rearrangement for tumorigenesis. Arecoline is of explicit carcinogenicity, numerous works demonstrate its mutagenicity, genotoxicity, and cytotoxicity. However, the effects of arecoline on aerobic glycolysis of esophageal epithelial cells remain unclear. In the present study, 5 µM arecoline efficiently increased HK2 expression to induce aerobic glycolysis in Het-1A-Are and NE2-Are cells. The mechanistic analysis showed that arecoline activated the Akt-c-Myc signaling pathway and reduced the GSK3ß-mediated phosphorylation of c-Myc on Thr58 to prevent its ubiquitination and destruction, subsequently promoting HK2 transcription and expression. Taken together, these results suggest that arecoline can induce aerobic glycolysis of esophageal epithelial cells and further confirm that arecoline is a carcinogen harmful to human health.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Arecolina , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células Epiteliais/metabolismo , Glicólise , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...